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Diffusion, relaxation, and response functions of solitons in 
one-dimensional antiferromagnets 

B A Ivanov. A K Kolezhuk and E V Tartakovskaya 
Theoretical Physics Division, Institute for hfctal Physics, 36 Vemadsky Street. 252142 Kiev, 
Ukl.aiW 

Received 2 FebNwy 1993. in final form 20 May 1993 

Abstract. Two mechanisms of diffusive kink motion in a quai-me-dimensional rhombic 
antiferromagnet. placed in an external magnetic field, are considered, together with their effect 
on the soliton cenrml peak in the dynamic stroctm factor (DSF). The temperature and field 
dependence of the diffusion coefficients is calculated. It is shown that non-dissipative diffusion 
gives zero contribution to the DSF, while ordinq Einstein diffusion change its form considerably 
in the region of small wavevectors 

1. Introduction 

Topological solitons of the kink type are known to play a special role in the dynamics and 
thermodynamics of quasi-onedimensional magnets [l]; in particular, they make a peculiar 
contribution to the dynamic structure factor (DSF) which determines the cross section of 
inelastic neutron scattering [2]. This contribution has the form of a central peak (CP) in the 
DSF [31, and the shape of the CP depends considerably on the character of the stochastic 
thermal motion of kinks [MI. 

It should be noted that a non-Gaussian shape of CP was observed experimentally for the 
one-dimensional antiferromagnet (AFM) (CH3)4NMnCI3 (ThfMC) [4], but since the authors 
of [4] described their results on the basis of the exactly integrable sineGordon model, the 
analysis was made only in terms of anomalous non-dissipative diffusion. 

Kink diffusion, caused by the interaction of kinks with the thermostat of quasilinear 
excitations (magnons in our case), was investigated for the first time by Wada and Schrieffer 
[7] for the scalar v4 model. They obtained a temperature dependence of the diffusion 
coefficient, D c( TZ, which was criticized [8,9] as contradicting the Einstein relation 
Dq = T (D and q are the diffusion coefficient and viscous friction constant). Later it  
became clear [10,6] that there are two different mechanisms of soliton diffusion, which 
are characterized by two different diffusion coefficients: normal diffusion coefficient D 
(determined by the viscosity q through the relation D = T/q) and the anomalous non- 
dissipative diffusion coefficient D, which is not connected with viscosity and is determined 
by shifts in the soliton coordinate occurring at random instants during collisions of the 
soliton with magnons. The temperature dependence D, c( T z  is universal, in contrast to 
the temperature dependence of D, which is determined by the behaviour of q = q(T) .  
For exactly integrable systems such as the sineGordon model irreversible processes are 
absent, q = 0, and the only type of diffusion is the anomalous D, type. If the integrability 
is violated (as in the case of double-sineGordon or the ‘p4 model) and q # 0. the D, 
diffusion is observed along with the normal D diffusion. 

0953-8984/93/417737+14$07.50 @ 1993 IOP Publishing Ltd 7731 
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In the present work, we shall analyse the two types of kink diffusion in AFMS by using 
a microscopic approach. It turns out that an external magnetic field H which is always 
present in experiments changes in principle the nature of viscosity and D diffusion in an 
easy-plane or rhombic AFM as compared to the case H = 0 considered earlier [ 111. We 
shall analyse the influence of diffusion on the shape of the CP in m s  and show that the 
role of the anomalous D, diffusion in real magnets cannot be significant. 

2. Model and kink solutions 

Let us consider a model of a one-dimensional two-sublattice AFM that can be described by 
the following free-energy functional: 

(1) 

Here m and 1 are the magnetization and antiferromagnetism vectors normalized by the 
condition m2 + Z2 = 1; MO is the value of equilibrium magnetization of a sublattice; 6 and 
01 are the constants of uniform and non-uniform exchange, respectively (the exchange field 
is He = 6 M 0 / 4 ) ;  h = H/Mo; H is an external magnetic field, and a is the lattice constant. 
The anisotropy energy w,(Z) wiIl be chosen in the form typical of a rhombic AFM: 

(2) 

) w = Mia2 J dx 1 2m2 + p l ) 2  - 2 m h - t  w,(Z) 
6 O1 

wa = fall: + ;a1; a1 7 a1 > 0 

the z axis being the easiest. In the case of an easy-plane AFM of the TMMC type, the constant 
a 2  < ,5'1 determines the weak anisotropy in the basal plane yz. For an AFM with a clearly 
manifested rhombic anisotropy of the CsMnCls.2HzO type, the constants @ I  and 82 have 
the same order of magnitude. 

It is well known [I21 that the Landau-Lifshits equations corresponding to the functional 
(1) can be reduced to a single equation for the vector 1, the total magnetization vector m 
being connected with 1. al/ar through the following relation: 

(3) 
Here g = 2po/E and po is the magnitude of Bohr's magneton. The effective equation of 
motion for the vector Z (which can be regarded as a unit vector to a fairly high degree of 
accuracy, l2  = 1)  can be obtained from the Lagrangian 

2 6 m  = ( I /gMo)[Z x (al/at)] + h - Z(h. 1). 

where c = g M o m / 2  is the limiting velocity of kinks at H = 0. For H = 0, this 
Lagrangian describes an anisotropic generalization of the well known chiral U model and 
is Lorentz invariant. However, in the presence of a magnetic field, the Lagrangian acquires 
terms linear in aZ/at which destroy the Lorentz invariance. 

Writing 1 in  terms of angular variables, 1, = cos6, Lz + il, = sin8 exp(iq), we obtain 
the following equations of motion for the angles 8 and q: 

c ~ [ a ~ e / a x ~  - (i/cz)a28/ar2] - s i n 8 c o ~ 6 [ a ( ~ p / a x ) ~ ~ 1  cos29 - j2s in2q]  

cc((a/ax)[(sin2 e)ap/ax] - (i/c2)(a/ar)[(sin2 e)ap/ari) + ( P I  - B2)sin2 e s inqcosq  

- ( s h / g m o ) F ( e ,  p)a9/ar = o 

+ ( s h / g 6 M o ) F ( e ,  p)ae/at = 0. 

(5) 
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Here ,& and & are effective anisotropy constants, which are determined by the 
renormalization of the anisotropy energy: w, + sa = w, + 2(h . The form of 
the function F(B, pj depends on the field orientation. We shall seek the soliton solution of 
system (5) in the form of a travelling wave witli a constant velocity U: 0 = e(c), p = rp($), 
where $ = (x  - ut j (1  - u ~ / c ~ ) - ' / ~ .  In this case, (5) can be written in the form 

ae" - (Y sine cos e(rp')Z - sin cose(& cos' p + B2 sin' rp) 

I d  = 0 (6) 2 2 1/z + [8huF(6, p)/gGMo(l - U /C ) 
cr(rp'sin20)' + @I - &sin20sinpcosp - [ShuF(B,  p)/gSMo(l - u2/c2j"']6''= 0 

(the prime indicates differentiation with respect to $). 
We shall confine our analysis to the case closest to the experimental situation, when 

the field is directed along the y axis. = PI, b2 = PZ + 4h2/6, 
F(B, rp) = sin'e s i n p  In the static case U = 0, there exist solutions of system (6) describing 
two types of kink. In one type (zy kink), the rotation of the vector I takes place in the 
easy plane zy (i.e., (0 = fn/2), while in the other (zx kink) the vector 2 rotates through 
the difficult axis x (rp = 0, n). The behaviour of the angle 0 in both kinks is described by 
the solution of 

In this case, 

cos60 = % tanh(c/xo) (7) 

where xo = ( C U / & ) ~ / ~  for the zy kink and xo = ( ( U / B ~ ) ' / ~  for the zx kink. If & < 81, i.e., 
H i Hc, H, = fMo[(P1 - P2)SI1/', the zy kink is preferable from the energy point of view 
for U = 0, while for H > H, the zx kink becomes more advantageous. 

However. for U # 0, the only solution 'surviving' without changes (except the Lorentz 
contraction of the kink) is that with p = 0, x. The kink with p = &n/2 is modified since 
F(B, x /2 )  # 0, and the vector 2 leaves the easy plane. 

As was shown earlier [13,14], the modification of the zy kink at non-zero velocity 
can be approximately described as a turn of the plane in which the vector I rotates, i.e., 
the soliton solution h3s a form of (7) with rp = rp,,(u), and xo = [ o ~ / B ( @ ) ] ' / ~ ,  where 
fi(po) = & + @I - ,&) coszw(u). At some critical velocity, U = U,, po(u,) = 0 or x, and 
a kink of zy type is continuously transformed into a kink of zx type. The critical velocity 
U, is given by [15,131 

U, = CIS2 - B,I.Li[(Xh)ZBI + S ( b 2  - BI)zl-"2 (8) 

and for values of the field that are not close to H,, the velocities U, and c are of the same 
order of magnitude. In our further consideration we shall assume that H << He, and that the 
temperature is low enough for the mean thermal velocity of kinks to be small as compared 
to U,. This will allow us to disregard the effects of modification of kink structure. 

3. Generalized Langevin equation for Brownian motion of kinks 

Before we proceed to the calculation of kinetic coefficients for solitons, it is useful to make 
some remarks. The peculiarity of antifemomagnets consists in that the potential of a kink 
is non-reflective for magnons in the case of rhombic anisotropy of type (2) for H = 0. and 
hence scattering processes do not make any contribution to q [ 1 I], and the value of q is 
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determined by three-magnon processes, q = qs  K (T/Eo)’, where EO denotes a kink rest 
energy. The introduction of small corrections to the anisotropy ener,y w, = wjhamb+&Aw,, 
E (< 1, leads to the emergence of the two-magnon viscosity qz cx E2T/Eo, and hence the 
behaviour of the total viscosity IJ  = qz+q3 depends on the relation between small parameters 
E and TIEo: q K T2 for T > &’Eo, and IJ c( T for T c &’EO. For example. in [ I l l  the 
fourth-order anisotropy was taken for the ‘correction’ Aw,. We shall prove, however, 
that the presence of an external magnetic field also leads to two-magnon processes, and 
for a certain geometry of the problem the relevant correction may prove to be significant. 
The ‘weight’ of the two-magnon viscosity can be varied by changing the field, which can 
obviously give additional information in neutron scattering experiments. 

Let us consider the motion of an individual zy-type kink (only this type is stable at low 
velocities for H << Hc)  in the magnon thermostat (we disregard the kink-kink interactions, 
assuming that the soliton gas is rarefied). In order to analyse such a motion, we return to 
the Lagrangian (4). In angular variables, the Lagrangian has the form 

B A Ivanov et nl 

2 . 2  ff 
ff 

L = M & ~ ~ / d x ( ~ [ 8 ~ + s i n  6p ] --[(VB)’+sin’B(V’p)’] 2 

8h sin’ 6 cos p8 1. I .  - - s 1 n ~ 6 [ ~ ~ c o s * p + ~ ~ s i n ’ ’ p ]  - - 
2 gsMo 

(9) 

In order to construct the Hamiltonian describing the ‘kink+magnons’ system, we shall use 
the following ansntz: 

6 = 6 o ( x - ~ , ) + f i ( x , f )  ‘p = ~ + ( l / s i n 6 & ~ ( x , r ) .  (10) 

Here xs = x , ( t )  is the kink coordinate and 60 and correspond to static soliton solutions 
of the system of equations (5). In other words, 60 is described by formula (7) for U = 0, 
90 = irr j2.  The function f i ( x , f )  is subjected to the constraint ~dn9V6’0 = 0, which 
excludes the zero-frequency (translational) mode corresponding to the motion of the kink 
from the mngnon field 8 .  

It should be noted that the expansion in the neighbourhood of static solutions is 
applicable only in the velocity region where the kink solution is modified weakly, i.e., 
in the region << U,. Consequently, an analysis of the Brownian motion of solitons 
carried out in this way will be correct only if the mean thermal velocity UT of a kink is 
small as compared to the critical velocity U,, i.e., under the condition 

TIE0 << ( 1  + [X2P1/4(P1 - Pz)1(H2/H~)/(l  - H 2 / H 2 ) 2 ) - ’ .  

Therefore, we can describe diffusion by using this approach only for T << EO and for values 
of the field differing considerably from the critical value Hc.  

Substituting (IO) into the Lagrangian (9), we can write L = E O + ~ , X : / ~ + L I + L ~ + .  . ., 
where L ,  contains magnon fields fi and p to the total power n; here EO = 2M~nZ[ff&’/’ 
is the rest energy of a kink, and m, = E0/cz its effective mass. It can be proved that the 
one-magnon term 

leads to a renormalization of the static kink solution (60,po) corresponding to its 
modification at non-zero velocity. Since this modification can be neglected in the velocity 
region ti,\ << U, we are interested in, L I  will be disregarded in further analysis. 
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In order to make the formalism more clear and avoid overloading our consideration 
with cumbersome expressions, we shall give the derivation of effective equations of motion 
for a soliton, taking into account the field-induced two-magnon processes only. The three- 
magnon processes will be analysed later, along with the contribution of higher-order terms 
in anisotropy energy. 

The two-magnon Lagrangian L2 can be written in the form L2 = L r )  + A L P ) ,  where 
L:') is defined as 

and can be diagonalized [16]. Here xo = [a/BzJl/2 is the thickness of a kink, 00 = C/XO 

the characteristic magnon frequency, and the quantity p = [PI - B2[ /& has the meaning of 
the rhombicity parameter (which depends on the strength H of the field). The well known 
operator '??o = + 1 - 2cosh-2[(x - x,)/xo] with a reflectionless potential has 
eigenfunctions & corresponding to magnons of the continuous spectrum: 

2 2 I / Z  @k = ((tanhz - ikxo)/[L(l + k Xo)] ] exp(ikx) Z = (X - Xs)/Xo 

f i o ~ h  = (1 + k2X~)$k  (12) 

and also the zero-frequency mode $ro = (2~o) ' /~cosh-l[(x - x,)/xo] N 06, corresponding 
to a magnon localized at a kink in the case of the p field. 

The Lagrangian A L P )  describing the two-magnon interaction has the form 

A further analysis (using the perturbation theory) requires knowledge of the small 
parameters of the problem. While using the expansion in the neighbourhood of the static 
soliton solution (lo), we have practically assumed that the kink velocity X, is small (although 
the 'actual' small parameter in this case is the ratio w/vc; see above). Besides, we have to 
assume the quantity E h/[f&S]'/* to be small for the interaction ALP' to be regarded as 
weak. (It should be noted that the condition E << 1 is not always satisfied. For example, 
in the case of an easy-plane magnet of the TMMC type, we have 8 2  N 0, B2 = 4h2/6, and 
E = 4, irrespective of the magnitude of the field. This case cannot be analysed using our 
approach, but we believe that the qualitative results will be the same.) 

Let us expand the magnon field in the eigenfunctions of the operator 20: 

and go over to the Hamilton formalism in the magnon variables. Presenting the coordinates 
q and Q and the momenta p and P conjugate to them in terms of Base amplitudes 
(corresponding to the creation and annihilation operators in the quantum theory), 

2 112 * 2 I / Z  * q k  = (fiXoWo/EoO~) [a-, + ah] P k  = i(fiEOWk/4*OWo) [ah - a-k1 
2 I /Z  A' (15) 1/2 A' Q o , ~  = ( b d / E o W  [ O,-k + A o , ~   PO,^ = i@E0520,d4~0@~) l O.k - A w l  
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we obtain the Hamilton function H = P O Q ~  + xk(pkqk + Pk&) - L (to be more precise, 
H is the Routh function since xs remains a Lagrangian variable) in the form 

(16) H = -m,ii/2 + Ho + Hi., 
where HO describes the gas of non-interacting magnons against the background of a kink 

If0 = z f iwkU:ak + x h Q k A ; A k  +hQoA:Ao. (17) 
k k 

The spectrum of the system contains magnons of three types: two branches of the continuous 
spectrum (e and rp magnons) with the frequencies 

(18) 2 2 1/2 O k  =OO[l + k  x01 z l / z  Qk =Q[ l  + p + k  X o ]  

and a mode of rp magnons localized at a kink and having the frequency Go = ~ f i .  
The interaction is described by the Hamiltonian Hi,, which can be expanded into a power 
series in the amplitudes A k ,  U t :  + Hi:) + . . .. The one-magnon term HA:) can be 
eliminated by using the ‘shift’ transformation of magnon amplitudes [ 171, which leads to 
various renormalizations of the static kink solution (see above). Since these corrections are 
of second order in the small parameters, they will simply be omitted in the further analysis. 

The two-magnon Hamiltonian H:) describes the scattering of magnons by a kink. In 
the first order in small parameters E and X, it  can be written in the form H::) = i 8 T  +&U, 
where the first term appears as we go over from L r )  to HO due to an explicit dependence 
of the wavefunctions $k on the kink coordinate xg:  

It will be shown later that this term corresponds to the processes occurring without a 
momentum transfer and leading only to an asymptotic shift in  the kink coordinate, while 
the second term is associated with the Lagrangian A L P )  and describes inelastic scattering 
processes: 

U = [ U,z(A;a2 + + CC] + (UwA:ar - U&A:a; + cc} . (20) 
I2 k 

The matrix elements of the operator T are defined as (the index 1 kl everywhere, etc): 

p -  
I2 - [@I - OZ)/(WI + Y)lT;,-z 

and TL and f; are given by similar expressions in which the frequencies W T , ~  are replaced 
by RI,?; we must assume that the indices I and 2 label not only the modes of the continuous 
spectrum, but also the localized mode. For the matrix elements of the operator U ,  we have 

(112 = - 2 i f i ~ s i n ~ ( ~ ~ / / w z ) ’ / ~ 0 [ ( r r x o ~ 1  + (kixo)’ + ( k z x o ) 2 ~ / ~ ( ~  + klx0) 2 2 If2 

(22) 
z z I j Z  x (1 + k 2 x o )  J /cosh[a(k~ - kz)x0/2111exp[i(kz - k ~ ) s l  

= -2f iq  sin (oo(~0x0/2~Ok)”Z[~ik2X,2/ sinh(rrkx0/2)1 exp(ikx,). 
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The terms of A*a' type give no contribution to the viscosity [IS], and we shall not 

Equations of motion in the variables a&< Akl a+ and xs have the form 
write the relevant amplitudes. 

(a/at)aH/ai, - aH/ax, = o ihak = aH/aa; ihf i0 .k  = aH/aA;,,. 

Taking into account the remarks made above, we obtain the following coupled system of 
equations for the kink coordinate and magnon amplitudes: 

m,x, = F ( t )  = C[i (wl  -w~)T,'~a;a~+i(S21 -Pz)T~A~A2]+& z [ i ( k l  - k ~ j I I ~ ~ A ~ a 2 + c C ]  
12 12 

ifiAk = hnkAk + ~ [ X & p k ?  + &u!#Uli') 
k' 

i h A o  = hPoAo + E Uaak. 
k 

This system can be investigated by using the standard thermodynamic perturbation 
theory (see, e.g., [191). For this purpose, we shall go over to amplitudes in the 'interaction 
representation' (iik(t) = ak(tj exp(iwkt), etc) and transform equations (23) into integral 
equations. Using the assumption about the adiabatic initiation of interaction, we obtain 
initial conditions of the type &(tj + ako at t + -CO, am =constant. Solving the integral 
equations by using the iteration method with such initial conditions, we obtain & ( r )  as 
a function of (aka) and f in the form of a series in the small parameters E and is. The 
averaging over the thermostat at I = --oo (i t . ,  over @lo]) is determined by the equilibrium 
Gibbs distribution function f o( exp(-Ho/T), so that (a;oapo) = (T/?Ifik)&p, etc. It 
should be noted that the simplest quantum-mechanical modification of these formulae can 
be carried out by replacing the classical multipliers T/hk, T/AQk by the Bose occupational 

choice of the version is obvious. In this way, we can generalize our analysis to the case of 
low temperatures T << hwo. The perturbation theory constructed by such a method makes 
it possible to calculate average values over magnon amplitudes in any order of E and is. 

In zeroth approximation in  the small parameters, the average value of the force F ( t )  
acting on a kink is equal to zero, and its two-point correlator has the form 

(F( t )F(O))")  = ~ ( W I  -4 1T121 n10" + 1)exp[i(wl - ~ ) t  - i ( k ~  - k~)Ax,(tjl 

numbers nk = [eXp(hWk/T) - I]-', Nk = [exp(hQk/T) - I]-', or nk + 1, Nk + 1; the 

2 1 2  

12 

 SI - Q z ) ~ I T ~ ~ I ~ N I ( N z  + 1)exp[i(Q1 - Qz)t - i(kl - k z ) A x , ( t ) l  
12 

+ C(kl - k2)21EU1*12[NI(n2 + 1) -t- (NI 4- 1)nzl 
12 

x exp[i(Ql - 0 2 ) t  - i(kl - k2)Ax,(t)] 

+ ~k21&~Ok12[NO(nA + 1) + (NO + l)nklexp[i(~o - Wk)t + ikAx,(t)l 
k 

(24) 
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where Ax&) x , ( t )  - x,(O) is the kink displacement during the time t .  In the first order 
of the perturbation theory, the mean force becomes non-zero and can be expressed in terms 
of the zeroth-order correlation function: 

B A Ivanov ef a1 

(this relation is essentially one of the forms of the fluctuation-dissipation theorem). Thus, 
we can single out i n  the force F ( z )  the two components, viz., the regular 'slow' component 
( F ( f ) ) ( ' )  and the rapidly fluctuating 'random force' f ( t )  = F ( t )  - ( F ( f ) ) ( ' ) .  This leads to 
the following generalized Langevin equation for the kink coordinate: 

m.i, = - ] - idry( t  - r) i , (r)  + f ( t )  (26) 

where y ( r )  = (l/T)(f(f)f(O)) plays the role of the memory function, and the random 
force correlator ( f ( t ) f ( O ) )  can obviously be regarded as coinciding with (24) to within i:. 
(It should be noted that a similar equation was written in [IO] by using the Mori method 
for solitons in the p4 model.) 

Let us consider the contribution of various interactions to the regular component of the 
force acting on a kink in greater detail. For this purpose, we shall analyse the function 
r ( w )  = a F ( w )  - iPJdw'(I/w')F(w - of), where ?(U)  is the Fourier transform of the 
memory function and P is the value principal. The quantity r ( w )  determines the solution 
of the Langevin equation (26) and can be interpreted as the 'coefficient of friction', which 
depends on the frequency. I t  can be easily seen that the expansion of r ( w )  in the region 
of low frequencies w <<WO has the form 

r ( w )  = 7 + iwAm. + L o z  + . .. (27) 

and the characteristic frequency at which r ( w )  decreases considerably has the order of the 
magnon frequency 00. The expansion coefficients in (27) have a simple physical meaning. 
The  quantity q = r(0) is the viscosity which is determined by the inelastic scattering of 
magnons at a k ink  

v = m + llll 
(28) 

K m = T Ck21&uokI'[NO(nk + 1) + nk(No + 1 ) 1 ~ 0  - 0 x 1  

m = 7 E ( k 1  - k2)21&ud[Nl(nz + 1) + m(N1 + I ) I W ~  - w2) 

k 

x 

I2 

(it should be recalled that we are speaking here only of the two-magnon viscosity 112 making 
the main contribution to the total viscosity at low temperatures T c &'Eo). The viscosity 17 
determines irreversible processes occurring in the system and is connected with the 'normal' 
diffusion coefficient D through the Einstein relation D = T / q .  

In  contrast, the coefficient A is not associated with dissipation and is due to scattering 
processes without a momentum transfer: 
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It determines the non-Einsteinian (non-dissipative) diffusion, the quantity D, = T h / m t  
playing the role of the coefficient of this diffusion [20]. 

Finally, the term in (27) that is linear in frequency simply leads to the replacement of 
the kink mass m. by the effective ‘dynamic’ mass &: 

f i ,  = m,  + Am,  = m, + T-’ z[lT,’z12nt(nz + 1) + lT$Nt(Nz + 1)l. (30) 
I 2  

Let us calculate the values of D, and q characterizing the stochastic thermal motion 
of a kink. The coefficient D, can be easily calculated by using explicit forms of relevant 
amplitudes; for both types of kink, we have 

D, = 

The two-magnon viscosity constant determined by the external field differs from zero only 
for a zy kink, i.e., is manifested for H < H,. (It should be recalled that the calculations 
are carried out for the case U << U,, i.e., we must assume that H is not close to He) The 
two-magnon viscosity is qz = q, + 711 (see (28)). The contribution of processes involving 
the localized magnon VI differs from zero only for p > 1: 

The calculation of the second component 711 associated with a mutual conversion of magnons 
from different branches of the continuous spectrum is a more complicated problem. The 
calculation gives 

VI1 = 

where f ? ( p )  is given by the following cumbersome integral expression: 

For p -+ 0 one can numerically find that f(p) + 0.33, and for p >> 1 we obtain the 
asymptotics f(p) 32/ap.  

So far we have been dealing only with field-induced two-magnon processes. Now we 
shall discuss two-magnon processes due to the higher-order anisotropy, and three-magnon 
processes (the transformation of one magnon into two). The inclusion of the fourth-order 
term Aua = b4 sin4 .9 in the anisotropy energy leads to inelastic two-magnon processes, and 
therefore to the contribution to the viscosity that has the following form [ l l ] :  
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where b?,,(p) a (b4/,8)2 << 1. Comparing (34) and (33), one can easily see that at low 
temperatures the field-induced viscosity contains the additional large factor (hwo/T)'/'.  
Therefore, assuming that the small parameters E and b4/,82 are of the same order of 
magnitude, we conclude that at low temperatures Aqz can be neglected, and that at T >> h q  
the contributions of field-induced and anisotropy-induced processes are comparable. 
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The three-magnon Hamiltonian Hi:) has the form 

Hi:) = x ( W 1 2 3 ( a l A ; A ;  + 2alA-2AI) exp[i(k~ - k2 - k3)ufI + cc) 
1 2 . 3  

+ ~ { Y I ~ A o ( ~ I A Y ,  +aflA2)expli(kl - k d u t l  +cc) 
I .2 

4- ~ [ ~ o k c Z n A & 4 ~ e X p ( i k U t )  + CC) (35) 
k 

where 1 = k l ,  etc. We shall not write down the expressions for the amplitudes; the only 
important thing to know is that the amplitudes *tu, "12, and Wok, unlike the three-magnon 
amplitudes in the sine-Gordon model [IO,  181. do not vanish on the mass surface of the 
corresponding processes (at W I  = Q2 + Q3, W I  = 522 f 520, and Wk = 2Q0, respectively). 
Consequently, the five indicated processes in (35) contribute to the viscosity q. 

The asymptotic form of the three-magnon contribution q3  can be determined in the 
limiting cases of low and high temperatures. At T << hwo the contributions from all 
processes are exponentially small and have the form (TJhwo)" exp(-hwo(l + p ) ' / ' / T ) ,  with 
different rational U (we do not give explicit expressions). At T >> hmo the contributions of 
all five three-magnon processes have the same temperature dependence: 

~3 = ( T 2 / E o w o x ~ ) f 3 ( p )  (36) 

where f3(p) is a complicated function. It is easy to see that the quantity q3, as compared 
with 02, does not contain the smalI parameter E. but contains the additional small temperature 
factor T I E o .  Therefore, at high temperatures q 3  can compete with q2: for T z Eohz/D2S, 
the contribution of q,  is significant, q Y 03 cx T Z  and D a IJT. If, however, 
T c Eoh2/&S.  then q rr 112 a T and the diffusion coefficient D does not depend on 
temperature down to the quantum-mechanical region T < h q .  

4. Dynamical structure factor 

The DSF S p ( 9 ,  w )  is the space-time Fourier component of the spin correlation function 
( S ( x ,  t)Sp(x', O)), which determines the response of the magnetic system to an external 
action. For example, the cross section of inelastic neutron scattering is proportional to the 
contraction of F'a(q,w) with some symmetrical tensor; in rhis case q and hw have the 
meaning of transferred momentum and energy, respectively. In the case of AFMs, the main 
contribution to the DSF originates from the correlator of the antiferromagnetism vector 1, and 
magnetization m according to (3) leads to small corrections of the order of HJH,, where 
He = 6M0/4 is the exchange field (these corrections were investigated in [ZI]). Therefore, 
neglecting the contribution of m, we can define DSF as 

Sup(9, w )  = / / d x  dx'exp[iq(x - x ' ) ]  / d t  exp(-iwt)(l'(x. t ) l B ( x ' ,  0)) (37) 
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where q is counted from the antiferromagnetic Bragg point n/a, a being a magnetic lattice 
constant. 

We shall be interested only in the DSF component associated with the contribution of 
kinks and responsible for the CP in neutron scattering experiments. The effects of soliton- 
magnon interference lead to corrections [22] reducing the CP intensity by a factor of about 
TIE0 and will not be considered here. Assuming that the density n, of the soliton gas is 
low enough, i.e., n s x ~  << I ,  we can approximate the N-kink solutions by a superposition of 
one-kink solutions, so that we have Is = 0 

where U" = sgn(cosqo,,), U; = sgn(O&). It should be noted that, in writing these formulae, 
we have used the 'non-relativistic' limit of expression (7) since, at low temperatures 
T << EO, the mean thermal velocity of a kink UT << c. 

The motion of kinks can be described by using the Langevin equation (26) for their 
coordinates x,( t )  with some initial conditions xn(-co) = x,". There is no need to specify 
the initial velocities &(-a), since they are 'forgotten' during a finite time of the order 
of the relaxation time r, = m * / q .  The averaging operation in (37) in this case includes 
averaging over the 'kink signs' U,, and U;, over initial coordinates x," and over realizations 
of the random force f ( t ) .  After simple transformations, we obtain the following expressions 
for the non-vanishing components of the DSF: 

Syy(q,  w )  = Ln,[n2/cosh2(nqx~/2)]l(q. w) 

(40) 
Szz(q .  w )  = L 11 dzdtexp[i(qz - wt)]exp[-2n,A(z, t ) ]  

where n, is the density of the kink gas, and L is the size of the system. The functions 
I ( q ,  w )  and A(z, t )  determine the shape of the CP and can be written in the form 

I ( q ,  w )  = 2 R e  drexp(-iwt)((exp[iqAx,(t)])) 

A(z, t )  = (((z - Ax&)) cotanhKz - Ax,(t))/x~l)) 
Im (41) 

where Ax,(t) x , ( t )  - x , ( O ) ;  the symbol ((. . .)} denotes the averaging over the realizations 
of the random force f .  Assuming for simplicity that the random process f ( t )  is of the 
Gaussian type, we can express the mean values appearing in (41) only in terms of the 
mean-square kink displacement (Ax:(t)). The Langevin equation (26) can be used to 
derive the following expression for (Ax:( t ) ) ,  which is valid for a time r much longer than 
the random force correlation time bar N 0;': 

(An:(r)) = 2 D f  - ZD7,(l + D,/D)-'[l - exp(-t/rr)] (42) 

where r, = mJq is the characteristic time of viscous velocity relaxation, and D and D, are 
the normal anomalous diffusion coefficients. An analysis shows, however, that the effect of 
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the D,  diffusion on the motion of a kink can be neglected. Indeed, although for f < r, we 
have (Ax:@))  = 2D.t+u;tz, the estimates of D. by formulae (31) show that fo r t  > z,,, the 
contribution of the first term is negligibly small, 2D,t/u;t2 c T/Eo << 1. The contribution 
of soliton-soliton interactions to D, is found to be still smaller [SI. Therefore, in contrast to 
the opinion of the authors of [4] and [5], the D, diffusion cannot manifest itself in the DSF 
at least in the region of low frequencies w c W. i.e. in the region of the CP, and in (42) we 
can henceforth put D. = 0. Using the approximation (Ax:@)) N 2Dsr[ ( l  t tZ/r:)'/' - I], 
we can easily obtain asymptotic expressions for I(q,  w )  describing the shape of the CP in 
two limiting cases. For q << 1;'. where 1, = (DrJ'/' is the mean free path of a kink, we 
obtain the Lorentzian shape of the CP which is typical of diffusive motion: 
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I ( q ,  w )  N 2 D q z / [ w z  + (Dq2)'1. (43) 

For q >> I;' ,  we obtain the Gaussian shape corresponding to a free motion of solitons: 

I ( q ,  w )  2: (2n /q2v~) ' /2exp[ -wz /2qzv~] .  (44) 

We shall not analyse high-frequency asymptotic forms for w >> W. which are insignificant 
for describing the CP. It should be noted that expressions of the type (43) and (44) appear in 
any model of Brownian motion for localized componencr, of solitons, and the only difference 
is in the temperature and field dependences of D. According to the formulae derived above, 
the CP halfwidth in the region of diffusive motion rw = Tq2/q  is temperature independent 
for hW < T < Eoh2/pzS and is proportional to I / T  for T z Eoh2/,&S. The field 
dependence, according to (33) and (36), is quite complicated and is determined by the 
dependence on H not only of the kink parameters, but also of the functions f i ( p )  and 

The calculation of the component Sz'(q,  w )  is more complicated: the function A(& t )  
in (41) is quite cumbersome and cannot be expressed in terms of elementary functions. 
However, the problem can be simplified by assuming that we are interested only in the 
behaviour of the DSF in the region of wavevectors q which are small as compared to the 
reciprocal thickness x;' of a kink (this is the most important region, since it can be shown 
that Sz2 N exp(-qxo) for 4x0 >> 1). Therefore, we can put xo = 0 in (39) and obtain the 
following expression for A ( z ,  t )  2 ((lz - Axs(t)l)):  

f d p )  appearing in vz and 1 3 .  

N e ,  t )  2 [ 2 ( A $ ( ~ N l ' ~ z q  ( z K W ~ ~ ( 0 ) I " )  

where 

q ( u )  = ( 2 ~ / a l / ~ )  dy exp(-y2) + [ e x p ( - ~ ~ ) ] / n ' / ~ .  LU 
Using for q(u) the Maki approximation q(u )  = (U' + 1/n)'j2 [23], we can present Su in 
the form of the integral 

where Kl(z) is the MacDonald function. We obtain the following asymptotic forms: 
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( 1 )  D(q2+4nT) >> 7;’. In this case, the expression for Szz coincides with that obtained 
by Maki [23] for freely moving solitons: 

SL‘ (q ,  o) Y 4~n,u:/[w’ + 2u+(q2 + 4n:)/rI3/’. (45) 

(2) D(q2 +4n:) << 7;’. For small wavevectors, we have a cumbersome expression for 
Szz in terms of the Whittaker function W - ~ ; j p ( z )  1241: 

s‘(q, w )  [ 4 ~ n , / ( q ~  + 4411 

x Re(iexp[iD(q2 + 4n : ) /~ lwl lW-1 ;~ /~ [ iD(q~  f 4n:)/xlolll. (46) 

For high and low frequencies, this formula can be written as 

Szz(q ,  w )  2: [4xnsL/D(q2 + 4n:)l[l - 6r2wz/Dz(qz + 4n:)’I 

Szz(q, w )  Y (4Dn,/noz) In Ixo/D(q* + 4n:)I 

It hence follows that (46) describes a ‘diffusive’ CP with a halfwidth Aw of the order of 
D(q2 + 4 4 ) .  The fact that Aw is finite for q = 0 is determined by the finite density 
of kinks and by kink recharging effects during their collisions [5 ] .  Recharging for Szz is 
taken into account explicitly by using the expression (39). It should be noted that if we uy 
to take into account these effects for the transverse component Syy.  the CP halfwidth for 
this component also becomes finite at q = 0, which can be qualitatively described by the 
substitution Dqz + D(qZ + 4 4 )  in formula (43). 

IwI << D(qz + 4 4 )  

Io1 >> D(q2 + 4n:). 

5. Conclusion 

The analysis of the vector model of AFMs carried out in this paper shows that this model is 
characterized by a more complicated behaviour than the conventional sinffiordon model, 
and exhibits a number of effects. In particular, normal Einsteinian diffusion of kinks 
appears due to the non-integrability of the vector model, which in turn leads to considerable 
modification of the soliton CP in the region of small wavevectors. We have analysed 
both two- and three-magnon processes, and found that their contributions to the diffusion 
coefficient can compete; the ‘weight’ of the two-magnon contribution can be controlled by 
the external magnetic field, which gives an interesting possibility of distinguishing between 
two- and three-magnon processes in neutron experiments. 
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